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Abstract—Scalability and Latency are the two important 

performance indicators for the distributed file system, and 

Google and Apache have achieved a great success with GFS 

and HDFS when operating big files, but the latency is too 

long when reading and writing small-size files, because the 

concurrent I/O can’t work for small files, besides the master 

node is difficult to extend in the cloud storage system with 

Master/Slave structure. In this paper, we propose a 

distributed cloud storage system based on P2P, where a 

central route node is introduced to improve the resource 

query efficiency, so clients can find data using only one 

message compared with Chord’s log(N). The central routing 

node only stores the status and routing information of all 

data nodes, which are indexed by the Trie Tree structure, so 

query time meets the requirement of online query. The data 

nodes store file’s content and file’s metadata thus the system 

is easy to extend because the master node no longer needs to 

store the metadata. Clients can also cache the routing 

information, so the read and write time is reduced according 

to the Locality Principle. Experiments show that the reading 

and writing time is significantly reduced compared with 

Hadoop HDFS. 

Keywords-P2P; the Small File; DHT; Chord Routing 

Algorithm; Cloud Storage System; Trie Tree 

I INTRODUCTION 

With the development of computational science, the 
large-scale parallel computers and large-scale parallel 
storage system are also renewed to meet the computing and 
storage requirements of various business systems. The 
development of parallel storage system is increasingly 
specialized to take as much utilization of underlying 
hardware as possible. Currently, the parallel storage system 

with a Master/Slaver structure has great advantage in 
reading and writing large-size files and the performance 
advantage is particularly evident when dealing with 
G-level even T-level files, such as Google’s GFS(Google 
File System) [11] and Apache’s Hadoop HDFS (Hadoop 
Distributed File System) [13]. But the concurrent I/O can’t 
work for small-size files. According to a report from the 
US National Energy Research Scientific Computing Center 
in 2007, 99 percent files are smaller than 64MB and 43 
percent files are smaller than 64 KB [1] in a file system 
with 1.3×107 files. Researchers of US Pacific Northwest 
National Laboratory have also come to the similar 
conclusion that 94 percent files are smaller than 64MB and 
58 percent files are smaller than 64 KB [2] in a file system 
with 1.2×107 files. The conclusion is also confirmed by the 
data from climate, astronomy, biology and other fields, and 
the average size is 61 MB [3] of the 4.5×105 files from 
global atmospheric circulation patterns and the average 
size is 1 MB [4] of the 2×107 files from astronomical 
image and the average size is 190 KB [5] of the 3×107 
files from human genome sequence map. So researchers 
begin to focus on the performance improvement for the 
small-size file in the distribute environment, and Shaikh 
[6] et al. presented an implementation of file stuffing on 
metadata server. The problem is that stuffing increases 
space pressure of the metadata server when more and more 
small files are stuffed. Carns [7] et al. implemented the 
similar stuffing method in PVFS2, and compared with the 
method in [6], the method in [7] only worked when the 
metadata server acted as data server at the same time, 
besides, only files that smaller than stripe size can benefit 
from their optimization. Hendricks [8] et al. studied the 
overhead due to the decoupling of clients and servers in 
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distributed file system. They presented metadata 
pre-fetching method to mask the network roundtrip. Since 
the metadata is very small, the optimization can bring 
significant performance gains. Kuhn [9] et al. observed 
that not all applications required complete metadata for 
small file workloads. They implemented a special directory 
hint, no metadata to label the directory which contains 
small files. This method shows significant metadata 
performance improvements for small files but the directory 
restriction limits its applying scope to directory level. 
Mackey [10] et al. proposed the metadata compress 
method, which can improve the space utilization for 
metadata, but the method doesn’t fundamentally solve the 
problem and introduces additional overhead 
simultaneously. The pre-fetching method can reduce the 
time overhead of a round-trip, but the method will 
introduce lots of extra time with the number of the small 
files increasing. 

Firstly, we present the current mainstream distributed 
file system with Master/Slaver structure, and then we 
analyze its performance bottleneck when dealing with 
small files. After that, we propose a distribute file system 
for small file based on P2P in this paper, and we introduce 
the Trie data structure to store the routing information, 
which meets the requirements of online query. Clients can 
also cache the central routing information when the 
number of small files is very large. Experiments show that 
the performance of reading and writing small files is 
significantly improved compared with Hadoop HDFS. 

II DISTRIBUTE STORAGE SYSTEM 

A. Distribute Storage System with Master/Slaver 
structure 

Currently, the cloud storage system mainly used the 
Master/Slaver structure, such as Google’s GFS, Yahoo’s 
HDFS and Amazon’s S3 (Simple Storage Service) [12]. 
The typical structure is shown as Fig.2.1. The master 
server maintains directory structure, metadata and the 
mapping between the file name and block ID, and data 
blocks are stored on slaver servers. Clients can read and 
write the data block in parallel for large-size files after 
obtaining Slavers’ IP and blocks’ ID in step 3 and step 4. 
But the concurrent I/O could not work [15] for small files, 

and when designing a file system for small file with same 
capacity the master will become the bottleneck. 

 

Figure 2.1 Google’s GFS file system architecture�

B. Distribute Storage System Based on P2P 

In this paper we proposed a new distribute storage 
system architecture for small files with a central routing 
node, which is shown as Fig. 2.2. 

 

Figure 2.2 Distributed file system based P2P 

The center node maintains the routing and status 
information of all data node, and the item is added or 
updated when the data node sends a heartbeat packet to the 
center node. By this way, the center node knows that the 
data node is online, the other hand, the center node will 
mark one node offline when the center node don’t receive 
a heartbeat packet within a threshold time, and then the 
center node will initiate backup process (There are 3 copies 
for each file). All the data node form a ring, and the system 
uses current mainstream distribute hash table DHT [16] to 
distribute the files, which is also adopted by Amazon’s 
Dynamo [14]. DHT enables that each node only needs to 
process the data falls between the current node and its 

42



�

precursor node, and the consistence of hash function 
uniformly spreads data along the ring. 

Currently, there are many routing algorithms based on 
DHT, such as Chord[17], CAN, Kademlia[18] et al., but 
Chord’s complexity is O(log(N)), Kademlia’s complexity 
is O(k), where N is the number of all data nodes and k is 
the number of the data set that is nearest to value key. 
Chord is completely decentralized and symmetric, which is 
different from our system. In our system we introduced a 
central routing node. The center node stores all nodes’ 
routing and status information, which is showed as Tab.1 
that clients can pre-fetch the routing information when the 
number of the routing table item is not huge; and client can 
also cache the routing information when the routing data is 
very large. It’s shown as Fig.2.2 that clients can directly 
read or write the data on the specific data node. But, the 
Center Node will become the bottleneck of the system with 
the number of small files increasing. There will be a few 
problems as follow: 

(1) The query time complexity is (log( ))O n  when 

the data set is orderly and the query time complexity is 
O(n) when the data set is unordered, so it’s impossible to 
handle the high concurrent request. 

(2) Too much maintain cost. The time complexity is up 
to ( )O n  for inserting and deleting nodes. The number of 
failed nodes is proportional to the system scale, and the 
maintenance cost greatly increases the system burden when 
the system extends. 

Table 1 Items of central routing node 

Hash Value Status IP Address 

12ABC23ADFKBCJKDFJAF On 10.2.1.2 

72ABC23ADFKBCJKDFJAF Off 10.7.1.2 

EFAER223ADFK12JKD78A On 10.9.9.2 

III THE INDEX STRUCTURE OF CENTRAL 
ROUTING NODE BASED ON TRIE TREE 

In this paper, a new index structure based on Trie tree 
is proposed to solve the problem that the query time is too 
long and the system is difficult to extend. The Trie tree that 
is known as word search tree or key tree is a tree structure, 
which is a variant of hash tree, and it is usually used as 

statistics in search engine system or sorting a large number 
of strings. Trie is more efficient than Hash Table for Trie 
tree has less character comparison. 

Figure 3.1 The shape of Trie tree 

Firstly, several symbols are defined in order to better 
describe the performance of our system. 

Definition 1: the number of all different characters in 
hash value is m and the character set in the hash value 

is denoted by 1{ ,... }mN N� � , where | |N m�  and 

symbol “||” denotes the length of the string. The symbol 
n  denotes the number of items in hash table. 

Definition 2: the length of the hash value is l and 

the string of the hash value is denoted by [1... ]T T l� , 

where | |T l� . 

Definition 3: the length of the search string is l and 

the search string is denoted by [1... ]P P l� , where 

| |P l� . 

A. Time�Complexity�

The Trie tree is built with the hash value shown in 
Tab.1, and the hash value has a length of 20 Bytes and 
status flag is one Byte, and IP address is 4 Bytes. 

1) Time complexity of construction Trie tree 
There is only one node called root node at initial in Trie 

tree, and it begins to traverse from root node when 
structuring a Trie tree in the memory, and a new node will 
be added when the string is not in Trie tree. Average 
children number of each node is / 2m , and average height 
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of Trie tree is / 2l , so the average number to compare for 
a new string is less than ( / 2)*( / 2)l m , so we can get 
results as follow: 

(1) The query time complexity is 
( *(log )* / 2)O n m l when the all nodes’ children are 

ordered. 
(2) Time complexity is ( *( / 2)*( / 2))O n m l  

when the all nodes’ children are unordered. 

2) Time complexity of querying 
The substance is that using the Trie tree can reduce the 

useless comparison. The search begins from root node and 
only m-times comparisons is needed at most at each layer 
because that there are m children at most to each node, so 
the average comparison time is ( / 2)*( / 2)m l  for a 

Trie tree with height of l . We can get results as follow: 
(1)Time complexity is ((log )* / 2)O m l when the 

all nodes’ children are ordered  
(2)Time complexity is (( / 2)*( / 2))O m l  when the 

all nodes’ children are unordered. 

3) Time complexity of adding 
It’s similar to construct a Trie tree for adding a node, 

and it begins from the root node and searches the node 
having same prefix with pattern P. The IP address stored in 
the matching node will be renewed if the pattern P matches 
all the string along the nodes of the Trie tree, otherwise we 
add a new node. We can get results as follow: 

(1)Time complexity is ( * / 2)O m l when the all 
nodes’ children are ordered. 

(2)Time complexity is (log( )* / 2)O m l  when the 
all nodes’ children are unordered. 

4) Time complexity of dealing failed node 
It’s similar to construct a Trie tree for deleting a failed 

node, and it begins from root node and searches the node 
having same prefix with pattern P. The node will be 
deleted if we find a leaf node, otherwise the pattern do not 
exist in the Trie tree. More, the father node may merge 
the remaining children after deleting the failed node. It’s 
shown as Fig.3.2 that is the shape after deleting node 12. 

The node in cloud computing environment could not 
leave initiatively unless the node failed, and the node fail is 
small probability event. Comparing with other P2P 
scenarios, the probability for data nodes to quit or join the 
system is very low, so it’s not often to delete or add nodes. 

Figure 3.2 Trie tree's shape after deleting node 9 

B. Space complexity for pre-fetching  

Let l  represents the height of the Trie tree, and let 

iL  represents the leaf number of layer- i  and let iM  

represents the non-leaf number of layer- i . Due 

to | |T m� , so we can get formula (1).  

1 2
i i

i
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m �
� � � �� �� 	 � 	� 	 � 	

              (1) 

Let M  represents the total number of all non-leaf 
nodes in the Trie tree, so we can get formula (4) according 
to formula (2) and formula (3), at last we can easily 

calculate that [ / , / 2 ]M n m l n l
 � � , so the space 

complexity is ( )O n . 
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C. Scalability of Central Server 

The query time complexity based on Trie tree is 

( )O m l , which meets the requirements of online query. 

But the memory consumption of Trie tree exceeds the 
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physical limit of the central node when the system extends, 
for instance, the number of small files is 1×108 and each 
leaf takes up 30 Bytes, thus the total memory taken by Trie 
tree is up to 3GB. So the center node will become the 
bottleneck when system extends. In this paper we propose 
a new scalable distributed architecture of the center server, 
which is shown as Fig.3.3. The server on the top in the Fig. 
3.3 is portal to clients, and the server A, B and C 
respectively construct the Trie tree using the substrings 
except the characters A, B and C. By this way, the space of 
Trie tree is distributed to each server, and just one hop 
routing time is added. 

�

Figure 3.3 Topology after the system extended 

D. Fault tolerance of central node 

The system uses the double hot backup method, which 
could ensure system sustainable work when the center 
node failed. The backup machine will take over the failed 
one immediately. 

E. Cache mechanism of client’s routing information 

Clients often read or write the same data many times in 
a period of time according to the Locality Principle, so 
clients can cache the routing information after obtaining 
the routing information from the central node. 

IV EXPERIMENTS 

In experiments, there are 10 data nodes and a center 
node, which is shown as Fig. 4.1. The Switch is D-Link’s 
10/100/1000 adaptive switch. The data node runs on 
Windows XP with Intel’s dual-core CPU 2.93 and 2GB 
memory, and the IDE is .NET Framework 3.5 and Visual 
Studio 2005. The software of node side is written in C# 

language, and the software of central node side that runs on 
Ubuntu with kernel 2.6.35 is written in C with compiler 
gcc 4.4.5. 

 

Figure 4.1 Network System topology diagram 

A. Comparison of query time 

It’s shown as Tab. 4.1 that the query time of array 
structure proportionally increases with the number of small 
files, but the query time of Trie structure increases little 
when the number of small files increase from one hundred 
thousand to one hundred million, the little increased time is 
mainly because more intermediate nodes are needed to 
compare. But the worst case is m-times comparisons to 
each layer, and the time complexity is ( )O m l , which is 
independent on n  and is a constant. 

The query time above doesn’t include round-trip time 
in the network, but it’s only the time of searching Trie tree. 

Table.4.1 Query Time of both algorithms 

The number of 
small files 

Query time of 
Trie Ms  

Query time of 
array Ms  

100000 0.014 1.05 

1000000 0.016 10.3 

10000000 0.018 111.2 

100000000 0.022 807.1 

B. Comparison of memory consumption 

It’s shown as Tab.4.2 that the memory consumption of 
two data structures increases with the number of small files, 
and the memory consumption of Trie structure is 1.6 times 
more than Array structures. The main reason is that the 
Trie tree needs additional intermediate nodes and 
additional pointers to maintain the tree. 
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Table.4.2 Memory Consumption of both algorithms 

The number 
of small files 

Memory 
consumption of 
Trie Bytes  

Memory 
consumption of 
Array Bytes  

100000 3837408 2400000 

1000000 40077184 24000000 

10000000 398140736 240000000 

100000000 17692305640 2400000000 

C. Comparison with Hadoop HDFS 

Hadoop is the most widely used open source 
distributed file system, which is similar with Google’s 
GFS. We compared the performance between ours system 
and Hadoop HDFS. The relationship chart between the file 
size and time consumption is shown as Fig.4.2 and Fig.4.3, 
and the time overhead of reading small files with Hadoop 
is far more than our system. It’s because that Hadoop is 
designed for large-size file in parallel, so Hadoop doesn’t 
take its advantage when reading and writing small-size file, 
instead, more system overhead is added for parallel design. 

 

Figure. 4.2 Time cost for reading files of 1K to 100 K comparing with 

Hadoop 

�

Figuer 4.3 Time cost for reading files of 10 K to 1000 K comparing with 

Hadoop 

V. CONCLUSION 

With the rapid development of computational science, 
all kinds of data including growing proportion small files 
are generated, and it’s too costly for storing the small files 
on the GFS or HDFS. In this paper we proposes a new 
distributed storage system for small files based on P2P 
after analyzing the distributed storage system with 
Master/Slaver structure. We introduce a central routing 
node to improve the efficiency of resource discovery, so 
clients can find data using only one message compared 
with Chord’s log(N). The central routing node stored the 
status and routing information of all the nodes, which is 
indexed by the Trie, and query time meets the 
requirements of online query. The clients can pre-fetch the 
routing information when the data is not very large, and the 
clients can cache the information when the number of 
small files is very large. The experiments show that the 
performance of our system is significantly improved 
compared with Hadoop HDFS when reading and writing 
small files. 

The system implemented the basic function of storage 
system for small files based on DHT, and the system 
reaches the requirement of online query. But the central 
node is the bottleneck when the system extends, so our 
next-stage works include the following contents: 
(a)The node in cloud computing environment could not 
leave until the node failed or the node was damaged by 
natural disasters, which is small probability event. Our 
next-stage work is to study the relationship between the 
system performance and the probability the node failed. 
(b)Implement the scalability based on the Trie structure. 
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